Correction to "Hydrodynamic Equations for Attractive Particle Systems on \mathbb{Z}," J. Stat. Phys. 47:265 (1987)

Enrique Daniel Andjel ${ }^{1}$ and Maria Eulália Vares ${ }^{2}$

Received May 6, 2003; accepted May 7, 2003

The second part of the proof of Lemma 3.3 in ref. 1 is wrong. This note explains how to correct it. After the sentence "It remains to prove that $\lambda_{v}=\delta_{\beta}$ if $v>v_{c}(v \in D)$ " on p . 277, the proof should be completed with:

We repeat the argument given for $v<v_{c}$. That is we take u and v such that $v_{c}<u<v$ and $\bar{v}<v$. Recalling Eq. (3.12):

$$
\begin{equation*}
(v-u) \alpha \leqslant F(v)-F(u) \leqslant(v-u) \beta \tag{3.12}
\end{equation*}
$$

with the above choice of u, v and since $v>\bar{v}$ we then have $\mu_{v}=v_{\beta}$ and

$$
v \beta-\gamma \varphi(\beta)-u \int_{\alpha}^{\beta} \rho d \lambda_{u}(\rho)+\gamma \int_{\alpha}^{\beta} \varphi(\rho) \lambda_{u}(d \rho) \leqslant(v-u) \beta
$$

From this last equation we write

$$
u \int_{\alpha}^{\beta}(\beta-\rho) \lambda_{u}(d \rho) \leqslant \gamma \int_{\alpha}^{\beta}(\varphi(\beta)-\varphi(\rho)) \lambda_{u}(d \rho)
$$

but we have that φ is concave so that for each $\rho \in[\alpha, \beta)$

$$
\frac{\varphi(\beta)-\varphi(\rho)}{\beta-\rho} \leqslant \frac{\varphi(\beta)-\varphi(\alpha)}{\beta-\alpha}
$$

[^0]and we obtain:
$$
u \int_{\alpha}^{\beta}(\beta-\rho) \lambda_{u}(d \rho) \leqslant \gamma \frac{\varphi(\beta)-\varphi(\alpha)}{\beta-\alpha} \int_{\alpha}^{\beta}(\beta-\rho) \lambda_{u}(d \rho)
$$
recalling the definition of $v_{c}=\gamma \frac{\varphi(\beta)-\varphi(\alpha)}{\beta-\alpha}$ we conclude the claim.

ACKNOWLEDGMENTS

The authors wish to thank Ellen Saada for pointing out the mistake in the proof of Lemma 3.3 in ref. 1.

REFERENCES

1. E. D. Andjel and M. E. Vares, Hydrodynamic equations for attractive particle systems on \mathbb{Z}, J. Stat. Phys. 47:215-236 (1987).

[^0]: ${ }^{1}$ CMI, Université de Provence, 39 rue Joliot Curie, 13453 Marseille cedex 13, France; e-mail: Andjel@cmi.univ-mrs.fr
 ${ }^{2}$ CBPF (Centro Brasileiro de Pesquisa Fisica), Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro RJ, Brasil; e-mail: Eulalia@cbpf.br

